If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2-6q-20=0
a = 1; b = -6; c = -20;
Δ = b2-4ac
Δ = -62-4·1·(-20)
Δ = 116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{116}=\sqrt{4*29}=\sqrt{4}*\sqrt{29}=2\sqrt{29}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{29}}{2*1}=\frac{6-2\sqrt{29}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{29}}{2*1}=\frac{6+2\sqrt{29}}{2} $
| 2x+2+3x+12=180 | | p-5=-28 | | -x^2+3+3=0 | | -6=-2p-5p+1 | | 5x2-14x+8=0 | | -95=-4(3k+4)+5 | | -7(n+5)+2=-82 | | 5w-2=7(w+2) | | -21=-27+r | | -21=1-4a+8a-6 | | 1-x÷2=-1 | | 2v+3v=-15 | | 8x-8(7+4x)=88 | | 3x+3=x21 | | 10=-4+a | | -27=b-6 | | -3+1/2(-6x-4)=-1/4(8+4) | | 4x-2-4(5x)=-26 | | 3x2+11x=20 | | 2x-1+43=180 | | 9x-6=62 | | 78.5/d=3.14 | | 9x-6=114 | | -5=-26+p | | 17.3x-6.4=3.7x+4.8 | | -12=15c/6+3 | | 7s+4s=55;s=11 | | 7(4x+9)=-26-6x | | ((v+2)/v)+((4/3v))=11 | | w+1.8=9.33 | | 6r=72r=12 | | 6x=90•7 |